Counting points on hyperelliptic curves in average polynomial time

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology

We describe an algorithm for counting points on an arbitrary hyperelliptic curve over a finite field Fpn of odd characteristic, using Monsky-Washnitzer cohomology to compute a p-adic approximation to the characteristic polynomial of Frobenius. For fixed p, the asymptotic running time for a curve of genus g over Fpn with a rational Weierstrass point is O(g4+ǫn3+ǫ).

متن کامل

Improved Complexity Bounds for Counting Points on Hyperelliptic Curves

We present a probabilistic Las Vegas algorithm for computing the local zeta function of a hyperelliptic curve of genus g defined over Fq. It is based on the approaches by Schoof and Pila combined with a modelling of the l-torsion by structured polynomial systems. Our main result improves on previously known complexity bounds by showing that there exists a constant c > 0 such that, for any fixed...

متن کامل

Goppa’s conjecture and counting points on hyperelliptic curves

A long standing problem has been to develop “good” binary linear codes to be used for error-correction. We show in this paper that the Goppa conjecture regarding “good” binary codes is incompatible with a conjecture on the number of points of hyperelliptic curves over finite fields of odd prime order. This rest of this introduction is devoted to explaining the precise result. Let C denote a bin...

متن کامل

Counting Points on Hyperelliptic Curves over Finite Fields

We describe some algorithms for computing the cardinality of hyperelliptic curves and their Jacobians over finite fields. They include several methods for obtaining the result modulo small primes and prime powers, in particular an algorithm à la Schoof for genus 2 using Cantor’s division polynomials. These are combined with a birthday paradox algorithm to calculate the cardinality. Our methods ...

متن کامل

Integral Points on Hyperelliptic Curves

Let C : Y 2 = anX + · · · + a0 be a hyperelliptic curve with the ai rational integers, n ≥ 5, and the polynomial on the right irreducible. Let J be its Jacobian. We give a completely explicit upper bound for the integral points on the model C, provided we know at least one rational point on C and a Mordell–Weil basis for J(Q). We also explain a powerful refinement of the Mordell–Weil sieve whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematics

سال: 2014

ISSN: 0003-486X

DOI: 10.4007/annals.2014.179.2.7